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ABSTRACT
A linear least-squares procedure for the determination of modal

residues using time-domain system realization theory is presented.
The present procedure is shown to be theoretically equivalent to
residue determination in realization algorithms such as the Eigen-
system Realization Algorithm (ERA) and Q-Markov COVER.
However, isolating the optimal residue estimation problem from
the general realization problem affords several advantages over
standard realization algorithms for structural dynamics identifica-
tion. Primary among these are the ability to identify data sets with
large numbers of sensors using small numbers of reference point
responses, and the inclusion of terms which accurately model the
effects of residual flexibility. The accuracy and efficiency of the
present realization theory-based procedure is demonstrated for
both simulated and experimental data.

I. INTRODUCTION
Research in structural identification in recent years has lead to a

proliferation of algorithms based upon system realization theory
(Ho and Kalman, 1965; Juang, 1987). These system identification
techniques, such as the Eigensystem Realization Algorithm (ERA)
(Juang and Pappa, 1985), ERA with Data Correlations (ERA-DC)
Juang, et al., 1988), and the Q-Markov COVER (QMC) (King, et
al., 1988), have important direct applications to structural control,
such as identification and order reduction of input-output models
for robust control and adaptive on-line identification for nonlinear
systems control. These algorithms all realize a model by minimiz-
ing some measure of the difference between the measured and re-
constructed discrete-time impulse response functions, heretofore
referred to as Markov parameters. In contrast to many classical
modal identification techniques, the system realization algorithms
are time domain techniques and are generally applicable to multi-
ple-input multiple-output (MIMO) measured data systems.

These algorithms have arguably attracted the most attention for

their use in modal test data analysis and reduction for identificat
of structural parameters (Pappa and Juang, 1988; Liu and Ske
1993). There are a number of reasons for this. First, these met
are fairly simple to understand and implement, requiring only st
dard matrix manipulation and numerical analysis functions such
those available in MATLAB. Secondly, these methods are found
on sampled data systems theory, which is directly applicable to
expensive microprocessor-based data acquisition systems. Fin
system realization theory offered a simplification of the mod
identification process by providing a clear indication (at least id
ally) of dynamic order and by unifying the pole identification an
residue estimation problems into a single step analysis. In ot
words, these methods were powerful tools at the right time an
practical approach for engineers unfamiliar with existing modal p
rameter identification methods and research.

These popular realization algorithms have, however, lacked 
practical capabilities inherent in many standard modal identific
tion software packages. Although these packages use some m
ple reference time domain identification techniques, such 
Polyreference (Vold, et al., 1982), they also feature separate tr
ment of pole identification and residue estimation, and the capa
ity to estimate residual flexibility and inertia which improve mod
reconstructions. By contrast, ERA and other system realization 
ory-based techniques identify simultaneously the poles and r
dues in a unified model, and do not generally provide for t
modeling of residual effects. Furthermore, many researchers h
noted problems in achieving highly accurate reconstructions
some types of modal data using discrete time-domain realiza
algorithms, which has lead, among other things, to the developm
of frequency domain-based realization techniques (Jacques 
Miller, 1993; Horta and Juang, 1993) and residue re-estimat
(Mayes, 1993; Peterson and Alvin, 1994).

The purpose of this paper is to develop additional practical ca
bilities for modern time domain realization-based algorithms (su
as ERA) through system realization terminology. As such, we 
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tend the present paper to provide a natural complement to existing
system realization literature. Our approach is based on a time do-
main estimation of the modal residues and residual flexibility, giv-
en a prior identification of the poles (i.e. frequencies and damping
rates) and the modal participation factors of the system inputs. That
is, for the discrete-time state space model

(1)

our approach determines C and D given that A and B have been
identified in a prior analysis, using perhaps a subset of the mea-
sured response functions. We will show how this estimation is con-
sistent with, and related to, the residue estimation implicit in
existing system realization algorithms. The procedure also pro-
vides a time-domain alternative to the approach of re-estimating of
the mode shapes in the frequency domain using frequency response
functions (Mayes, 1993; Peterson and Alvin, 1994).

To this end, the paper is organized as follows. In Section II, the
time domain-based system realization theory and procedure is pre-
sented. In Section III, a procedure for optimally computing the
mode shape matrixC using a linear least-squares solution withA
andB from Eqn. 1 is detailed, and its relationship to the ERA com-
putation ofC is examined. In Section IV, the present mode shape
estimation procedure is utilized to develop three useful generaliza-
tions of ERA for identification of structural dynamic models.  Sec-
tion V applies the procedure to a realistic simulated data example,
and to experimental data. Conclusions are offered in Section VI.

II. REVIEW OF TIME DOMAIN
SYSTEM REALIZATION PROCEDURE

We begin by presenting the governing equations of motion for
structural dynamics in their usual forms. The response of a struc-
ture to a set of forces or inputsu(t) is usually modeled as a spatially
discretized second order matrix differential equation of the form:

(2)

whereM is the mass matrix,D is the damping matrix,K is the stiff-
ness matrix, and  is the force influence matrix. The vectorq(t) in-
cludes the physical degrees of freedom (DOF) of the model. If we
define then associated normal modes  of Eqn. 2 according to:

(3)

(4)

then the structural model can be placed into the first order modal
state-space form:

(5)

in whichy(t) is the response, and the state-space matrices are:

(6)

in which , , and  are the output displacement, veloci
and acceleration location influence arrays, respectively.

Because experimental vibration data is sampled in time, time 
main linear system realization procedures begin from the presu
tion that a finite order discrete state-space model of the sys
exists of the form:

(7)

in whichk is the time sample index. The procedure by which Eq
5 is sampled to lead to Eqn. 7 must be done carefully to avoid
lconditioning due to the transformation from the continuous(s)
plane to the discrete(z) plane. Likewise, the transformation from a
realized model of the form of Eqn. 7 back to the continuous rep
sentation of Eqn. 5 requires careful eigenrotation and mass norm
ization, as described by Alvin and Park (1994).

When the model of Eqn. 7 is used as a predictor, the arbitrary
sponse to an inputu(k) is given by:

(8)

in which the system Markov parametersM(k) are related to the
state-space matrices by

(9)

All state-space time domain realization methods attempt to find 
state space matricesA, B, C, D from measurements of the sequenc
M(k). This is the process known as system realization.

The essential considerations in system realization are the se
tion of the model order (it is presumed that the model form is c
rect) and the determination of the state space parameters fro
minimization of some prediction error. For ERA, the prediction e
ror is defined in terms of a Hankel matrix of the Markov param
ters, as defined by:

(10)

The ERA realization finds the linear least squares solution to m
imize the error in the shift in the Hankel matrix of the system mod
and the data according to:

(11)
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(12)

If the Hankel matrix is formed from the data, then the factors
and  are obtained from a singular value decomposition (SVD)
of the  Hankel matrix according to:

(13)

The model order is selected (in principle) by examining the numer-
ical rank of . From this, the system realization problem
is solved by:

(14)

Peterson (1992) discusses the computationally more efficient ap-
proach of factoring  instead of  to obtain
the factors of Eqn. 13. In this case, it is more computationally effi-
cient to calculate the factors using a symmetric eigensolver in place
of the SVD. By only computing the largest  eigenvalues and
vectors of the Hankel matrix product, it is possible to determine re-
alizations using very large values ofr ands without calculating the
entire spectral decomposition.

III. TIME DOMAIN RESIDUE ESTIMATION
Using the terminology consistent with system realization theory

and outlined in Section II, we now develop the time domain residue
estimation as follows.

Least-Squares Solution for Residues
Suppose the state space matrices A and B have been determined

from a data set using, for example, ERA/DC or Q-Markov COV-
ER. Then, using Eqn. 9, we have

(15)

Hence,

(16)

where

(17)

The least squares solution forC using Eqn. 16 is given by

(18)

The solution is well-defined as long as , wheren is the sys-
tem order (dimension ofA). Note that the solution forD, that is

(19)

holds under the present theory, so long as additional terms, suc
residual flexibility, are not added to the problem.

The implementation of Eqn. 18 is straightforward because we 
utilize the singular value decomposition of  used in th
previous analysis to realizeA andB in order to determine :

(20)

Thus,

(21)

Relationship to Residue Estimation in ERA
As reviewed in Section II, in ERA the solution forC is given by

(22)

where  and  is the generalized observ
ability matrix, which is realized from the singular value decomp
sition of the measured Hankel matrix , viz.

(23)

Then, from Eqn. 22 we have

(24)

Thus, comparing Eqn. 18 and Eqn. 24, the least squares solutio
C is fully consistent with system realization theory-based resid
determination. The fundamental distinction is that the ERA so
tion for C is optimal for the “realized” Markov parameters; that is
the approximated Markov parameters as expressed by the rea
Hankel matrix , whereas the least squares solution is 
timal for the actual measured Markov parameters.
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IV. ALGORITHMS BASED ON PRESENT THEORY

An Eigensystem Realization Algorithm using
Reference Point Responses (ERA-RP)

The residue estimation algorithm presented in Section III leads to
a very useful generalization of ERA for structural dynamics identi-
fication. Since the modes which are identifiable from the data are
limited to those which are disturbable from the system inputs, it is
only necessary to include a small number of reference point re-
sponses from which the same modes are observable. In the case of
structural dynamics when the system is reciprocal (i.e. symmetric
mass, stiffness and damping properties), the logical sensor comple-
ments are driving point measurements, that is sensors co-located
with the system input degrees of freedom.

The prime advantage of this approach is that it enables the use of
longer data records for the same Hankel matrix dimension, or al-
lows the reduction of the Hankel matrix dimension to increase
overall computational efficiency. The use of longer data records is
important for obtaining accurate and consistent frequency and
damping estimates from real data. Reducing the size of the Hankel
matrix is also important because the major computational overhead
in the system realization procedure is strongly dictated by the min-
imum dimension of the matrix.

For example, suppose a typical modal test of a complex structure
is performed for the purpose of characterizing the normal modes. If
the test is measured using 100 accelerometers and 3 force inputs, an
ERA analysis might utilize Hankel block dimensions of ,

, leading to a Hankel matrix of size .
On the other hand, a reference point ERA analysis might instead
use , , for a Hankel matrix of size

. In the latter case, the length of the Markov se-
quence actually used in the Hankel matrix is slightly greater than in
the ERA analysis, but the minimum matrix dimension is reduced by
70% and the computational effort required to decompose the matrix
is reduced by approximately 97%.

Recomputing Residues after Elimination of
 Inaccurate Poles

The experimental study by Doebling, et al. (1994) found two
main problems with determining structural poles from time domain
realization algorithms:
• Many structural poles converge only after massive overspecifi-

cation of the model order (nx in Eqn. 14). Overspecification of
model order, however, engenders additional computational or
noise modes which should not be retained for subsequent anal-
ysis using the identified model.

• Poles which have converged can occasionally split into two
nearly repeated (but nonphysical) modes as model order over-
specification is increased to converge other less observable
poles.

In view of these pathologies, it is usually necessary to use one or
several quantitative model quality indicators (MQI) to detect con-
vergence and discriminate unwanted or unreliable modes from the
system realization (Peterson and Alvin, 1994).

Unfortunately, because all the global mode shapes are extracted
through the realization process simultaneously, only the mode
shapes of the full realization can be considered to be optimal in any

sense. If, however, some modes are not retained for further an
sis, the remaining mode shapes cannot be said to be optimal 
respect to either the measured or the realized response param
This is often not a problem if the modes are well-spaced and
thogonal via the measurement points. It can be a serious prob
however, when computational mode splitting, as described abo
occurs in the realization analysis. In this case, the mode shape
formation can split between the two nearly identical poles. Hen
when splitting is detected and one pole is removed from the mo
set, important mode shape information is also lost.

The application of the linear least-squares solution forC is
straightforward in this case. Simply perform the system realizat
analysis to obtainA, B andC in their decoupled modal form. Then
after computing various MQI and removing unreliable poles fro
A andB, C is recomputed using Eqn. 18. It should be noted that 
generalized controllability matrix  must be recomputed usi
the reducedA andB matrices, rather than using the singular valu
and vectors of the Hankel matrix as in Eqn. 21. This is not a sig
icant computational burden, however, as powers ofA are inexpen-
sive to compute in the decoupled block modal form, and the larg
matrix inverse operation is of the order of the retained mod
(which is relatively small in most instances).

Inclusion of Residual Flexibility Terms
One serious deficiency of the discrete-time state space mo

form common to ERA and other algorithms is that it cannot alwa
account for the residual flexibility effects of modes outside t
measurement bandwidth. In particular, when using velocity sens
or accelerometers (arguably the most popular transducer types
modal testing), the modes above the measurement bandwidth 
tribute a sum term proportional to the Laplace termss ands2, re-
spectively (Ewins, 1984; Peterson and Alvin, 1994). Such ter
cannot be properly expressed in the discrete-time state-space m
form, however, even though their influence is captured in the m
sured FRFs (and thus the Markov parameters).

One possible corrective approach is to compute a residual fle
bility term by fitting the trend of the frequency domain error b
tween the measured FRF and its model-based reconstruction. 
approach is generally effective but ignores the weak coupling a
frequencies between the contribution of the identified modes a
residues and the residual flexibility. The result also mixes lea
squares time-domain and frequency domain computations, obs
ing the optimality criterion of the complete model response.

The present linear least-squares algorithm for estimating m
shapes of the system realization is easily extended to include th
sidual flexibility contribution in a consistent manner. Starting fro
the proper expression of the discrete FRF including residual ter
we have

(25)

whereF is the residual flexibility matrix andp is the differentiation
order of the sensor type with respect to displacement (i.e.p=1 for
velocity, p=2 for acceleration). Here the Laplace terms has been
evaluated along the frequency axis  at the discrete freque
values , where  andk, N, and

r 50=
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are the sample index, total number of samples and sampling rate,
respectively.

Taking the inverse discrete fourier transform (IDFT) of Eqn. 25
lead to the following relationships

(26)

where  are the IDFT coefficients of the discrete function

(27)

evaluated at

(28)

The order of values for k given in Eqn. 28 depends on the numerical
algorithm for computing the IDFT; the above ordering is consistent
with that used for the inverse fast Fourier transform in MATLAB.
The time-domain coefficients  of the residual term are es-
sentially normalized Markov parameters of the sum contribution of
the modes above the measurement bandwidth to the estimated
FRFs. Figure 1 shows the coefficients ofs ands2 for a small sample
record with unit sample time. Using this result, we can then form
the linear least-squares problem

(29)

where  is the identity matrix,m are the number of inputs, and

(30)

The solution of Eqn. 29 is then

(31)

Note that whenF and its coefficients are dropped from Eqn. 29, the
solutions forC andD are given by Eqn. 16 and Eqn. 19, respective-
ly.

The above formulation can often lead to an illconditioned matrix

due to the mixture of continuous and discrete frequency dom
terms. In order to avoid these problems, we replace  in Eqn.
andF in Eqn. 29 by frequency-normalized counterparts

(32)

Then the estimated term  is multiplied by  to obtain th
correct residual flexibility term consistent with the continuou
equations of motion.

V. APPLICATIONS AND EXAMPLES

Numerical Example using Modal Test Simulator
In order to properly understand the behavior of any system id

tification algorithm, it is important to perform simulations usin
data which is highly characteristic of the actual data the algorit
will ultimately be applied to. Often, in time domain system iden
fication research, this realism is limited to the addition of gauss
noise to Markov parameters of displacement outputs, which 
generated in the time domain by the discretized system equati
Unfortunately, this approach neglects the process by which Ma
ov parameters are usually obtained in testing; that is, frequency
main FRF estimation of acceleration data with signal conditionin
ensemble averaging and digital signal processing. The signal 
cessing and residual flexibility effects engendered can be far m
significant on the performance of system realization algorithm
than the level of noise which is typically encountered, at least
controlled modal testing environments. Therefore, a modal test
simulator was developed which includes all of the aforemention
effects, in addition to assumed measurement noise and burst 
dom excitation.

Figure 2 shows a planar truss example. The model includes
unconstrained DOF, 18 acceleration sensors and 3 externally
plied force inputs; 3 of the sensors are collocated with the 3 inp
The modal testing simulator was used to generate the FRFs fo
54 input-output pairings. The simulator used 8192 samples per
semble, sampled at 1000 Hz with anti-alias filtering set at 400 H
The FRFs were obtained using 10 ensemble averages and 1% 
was added to the measurements of the forces and acceleration

The first stage of the time-domain system realization proce
consists of the estimation of the reliable system poles. For this
ample, the 3 driving-point (i.e. collocated output) measureme
were retained as reference responses for a total of 9 FRFs. An 
cient form of ERA (Peterson, 1992) was used with Hankel block 
mensions of r=300 and s=2000 for total data matrix dimension

. If all response measurements had been includ
in the data matrix, the dimension would have bee

. The order of the ERA-estimated model was va
ied from 50 to 100 states and the convergence of various MQI w
studied. The final model order chosen was , for a no
inal set of 26  modes. Of these, 3 modes (6 complex poles) w
judged as inaccurate or unreliable and thus were removed from
modal set. A comparison of the retained modes to those of the e
model are shown in Table 1.

The second stage of the time-domain system identification c
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sisted of using the present mode shape estimation algorithm to ob-
tain mode shapes for the full set of 18 measured accelerometers.
For the least-squares estimation, the first 2000 Markov parameters
were used, consistent with the column dimension of the Hankel ma-
trix used for the pole estimation. Figures 3 and 4 show the FRF re-
constructions using the retained set of ERA modes together with
the full mode shapes estimated using Eqn. 18. Before proceeding,
we make the following observations.

First, the transfer FRF shown in Figure 4 cannot be obtained from
the ERA analysis alone, as the Markov parameters for this input-
output pair were not included in the Hankel matrix. That is, al-
though the ERA-derived mode shapes did not include this response
location, they were effectively estimated using the present proce-
dure. Second, 3 modes were eliminated from the ERA realization,
it was also useful to reestimate the mode shapes for the reference
point responses, as the ERA mode shapes were extracted simulta-
neously with the inaccurate modes. In this particular case, because
the inaccurate poles were not closely coupled with any of the re-
tained poles, the original ERA mode shapes and the re-estimated
mode shapes at the reference points were essentially identical.

Finally, other than the resonance which was not identified at ap-
proximately 312 Hz, the reconstructed FRFs are highly accurate at
the resonance peaks. The zeros of the FRFs, however, show vary-
ing degrees of error, particularly the driving point response. These
errors are due to the exclusion of a residual flexibility term in the
ERA model and in the new mode shape estimation via Eqn. 17. If,
however, we include a term to model residual flexibility, as in Eqn.
31, the reconstruction is significantly improved, as shown in Figure
5. Further improvement at low frequency could possibly be ob-
tained by changing the number of time points used, or by applying
constraints to Eqn. 25. The accuracy of the estimated mode shapes
from Eqn. 18 and Eqn. 31 with respect to the exact mode shapes of
the example model is shown in the last two columns of Table 1, in
terms of the modal assurance criteria (normalized vector correla-
tion). While the mode shape estimate without including the residual
term is nearly exact, there is an improvement in the mode shape by
simulataneously estimating the residual flexibility. This result is
consistent with the existence of a weak coupling between the two
response contributions.

Application to Experimental Data
Although the preceding numerical example was realistic, it is of-

ten helpful to verify the accuracy accrued by the curve fitting pro-
cedure through its application to actual experimentally measured
data. Figure 6 shows a photograph of the three-dimensional canti-
levered truss structure tested. The modal testing used one force in-
put and 61 accelerometers (including a driving point locations),
with a sampling frequency of 500 Hz and 50 ensemble averages.

As in the numerical example, the poles were estimated using
ERA with the single driving point measurement; after selecting

=100 (50 modes), 28 modes were retained for the final model.
The 61 response measurements were then re-estimated to yield the
desired mode shapes and residual flexibility. A representative driv-
ing point and transfer FRF are shown in Figures 7 and 8. One im-
portant lesson learned with this data was that it was important  to
include the last 20 time samples of the impulse response in the least
squares equation in order to obtain good estimates of the residual

flexibility. This is because of the magnitude increase of  
 in Figure 1.

VI. CONCLUSIONS
A linear least-squares mode shape estimation algorithm us

time domain system realization theory has been presented. 
present procedure enhances existing time domain system rea
tion algorithms such as ERA, ERA/DC and Q-Markov COVER b
adding the ability to compute (or reestimate) global mode sha
when performing reference point-based pole estimation and unr
able pole elimination. Furthermore, the procedure can be gene
ized to estimate residual flexibility terms which cannot be mode
within the discrete state space form. These capabilities have b
demonstrated via numerical and experimental data.
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FIGURE 1: TIME DOMAIN REPRESENTATION OF THE
LAPLACE TERMS S AND S2

FIGURE 2: 2-D TRUSS NUMERICAL EXAMPLE

FIGURE 3: DRIVING POINT FRF RECONSTRUCTION

FIGURE 4: TRANSFER FRF RECONSTRUCTION

TABLE 1: ACCURACY OF IDENTIFIED MODES USING
RP-ERA WITH RESIDUAL FLEXIBILITY

Mode # fexact (Hz) fident (Hz) Error% MAC

1 23.062 23.065 0.0113 1.0000

2 54.700 54.700 0.0011 1.0000

3 81.566 81.566 0.0004 1.0000

4 92.457 92.457 0.0003 0.9999

5 132.26 132.26 0.0005 1.0000

6 162.94 162.94 0.0028 0.9996

7 171.20 171.20 0.0002 1.0000

8 205.43 205.43 0.0002 1.0000

9 235.15 235.15 0.0006 1.0000

10 237.93 237.93 0.0003 1.0000
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FIGURE 5: DRIVING POINT FRF WITH RESIDUAL FLEXI-
BILITY

FIGURE 6: PHOTOGRAPH OF TRUSS MODAL TESTING

FIGURE 7: DRIVING POINT FRF AND RECONSTRUC-
TION FOR TRUSS TOWER

FIGURE 8: TRANSFER FRF AND RECONSTRUCTION
FOR TRUSS TOWER
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